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INCONSISTENT MODELS OF ARITHMETIC
PART II: THE GENERAL CASE

GRAHAM PRIEST

Abstract. The paper establishes the general structure of the inconsistent models of arithmetic of [7].
It is shown that such models are constituted by a sequence of nuclei. The nuclei fall into three segments:
the first contains improper nuclei; the second contains proper nuclei with linear chromosomes; the third
contains proper nuclei with cyclical chromosomes. The nuclei have periods which are inherited up the
ordering. It is also shown that the improper nuclei can have the order type of any ordinal, of the rationals,
or of any other order type that can be embedded in the rationals in a certain way.

§1. Introduction. Paraconsistent logics have been invoked for many different pur-
poses, such as the solution of the paradoxes of self-reference.! Such applications
are, of course, philosophically contentious, and one cannot subscribe to them un-
less one takes a paraconsistent logic to be, in an appropriate sense, the correct
logic. But paraconsistent logics also make possible many mathematical structures
interesting in their own right;?> and one may explore these, whether or not one is a
card-carrying paraconsistent logician—just as a classical logician may explore the
nature of intuitionist structures without subscribing to the correctness of intuitionist
logic.

Some of the most intriguing mathematical structures to arise so far in this context
are the inconsistent models of arithmetic.> These are interpretations of the language
of arithmetic that model all the truths of the standard model of arithmetic, plus
more (and so are inconsistent). The first part of this paper, [7], whose contents I will
summarise later, provided a complete taxonomy of the finite inconsistent models.

In this second part of the paper I will discuss the general case. In the next
section of the paper, I will summarise the relevant material from [7]. Following
that, I will establish the general structure of all inconsistent models of arithmetic.
Models can be chunked into blocks that I will call nuclei. Section 3 establishes
the basic properties of nuclei. Section 4 establishes their internal structure. Proper
nuclei contain successor sequences that I will call chromosomes. As we will see,
there are two type of proper nuclei, those whose chromosomes are linear, and those
whose chromosomes are cyclical. Section 5 establishes some further facts about
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2For a survey of some of these, see [3].
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the internal structure of nuclei. The subsequent sections of the paper discuss the
order-type of nuclei. Section 6 demonstrates that the improper nuclei may have the
order-type of any ordinal. Section 7 shows that they may have the order-type of
the rationals, and Section 8 generalises this result to certain other order-types. In
Section 9, I conclude with some comments and open questions.

§2. Preliminaries. The models that will concern us are interpretations of the
paraconsistent logic LP. The language of the logic, L, is that of classical first
order logic, including function symbols and identity. An L P interpretation is a pair
(D, I'), which is exactly the same as an interpretation of classical first-order logic,
except that for every n-place predicate, P, I(P) is a pair comprising the extension
and anti-extension of P. I will write these as I™(P) and I~ (P), respectively. I*(P)
and I~ (P) may overlap, but their union must be the set of all n-tuples of D. The
extension of the identity predicate, ‘=", is always the set {({x, x);x € D}.

To give the truth and falsity conditions of the language I employ the standard
dodge of supposing that it is augmented with a name for every member of D. With-
out loss of generality, we will take the names to be the members of D themselves, and
adopt the convention that for every d € D, I(d)is just d itself. If the interpretation
is A, I will call the augmented language L 4. I is extended to assign every term of
L, a denotation in the usual way. Every formula, o, of L, is assigned a semantic
value, v4(a), in the set {{1},{1,0},{0}}, by the following clauses. (Truth condi-
tions are obtained by ignoring the material in square brackets; falsity conditions,
by substituting it in the obvious way.) If o is atomic, Pt ... t,:

1[0] € v4(a) & (I(8))...I(t,)) € IT1(P)
The clauses for negation, conjunction and the universal quantifier are as follows:

1[0] € VA(—IO{) & 0[1] € vA(a)

1[0] € v4(a A B) & 1[0] € v,4(a) and [or] 1[0] € v4(B)

1[0] € v4(Vxa) < 1[0] € v4(a(x/d)) for all [some] d € D
Disjunction and existential quantification have the natural dual truth/falsity con-
ditions. a D B is defined, in the usual way, as ~« V B. If 4 is an interpretation,
o s true [false] in A iff 1[0] € v4(a). If T is a set of sentences, 4 is a model for X,
A [ a, iff every member of X is true in 4. Note that those interpretations where
all predicates have disjoint extension and antiextension are isomorphic to standard
interpretations of classical logic, and so may be identified with them.

Next, we have two lemmas about LP. (For their proofs, consult [7].) First,
suppose that we have two interpretations. The first has interpretation function /;
the second, I,. The second is an extension of the first iff they are identical, except
that for every predicate, P, I;'1(P) C I,T)(P). |

EXTENSION LEMMA. If B is an extension of A then for any a of L4, v4(a) C vp(a).

For the second lemma, let 4 = (D, I), be any interpretation, and let ~ be any
equivalence relation on D, which is also a congruence relation on the interpretations
of the function symbols in the language. If d € D, let [d] be the equivalence class
of d under ~. The collapsed interpretation, A~ = (D~,17), is defined as follows.
D~ = {[d];d € D}. For every constant, ¢, I~(c) = [I(c)]- For every n-place
function symbol, f, I~(f)([d]...[d,]) = [I(f)(d;...d,)]. (This is well defined
since ~ is a congruence relation.) If P is an n-place predicate, ([d;]...[d,]) is in its
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extension in 4~ iff there are ey ~ d,... ,e, ~ d,, such that {(e;...e,) € IT(P).
The anti-extension of P is defined similarly.

COLLAPSING LEMMA. For any formula, o, of L4, v4(a) C vy~ ().

The Collapsing Lemma tells us that in a process of collapse, truth values are never
lost; anything true/false in the original interpretation is true/false in the collapsed
interpretation. In particular, if 4 = X then 4™ = X.

Now and for the rest of this paper, fix L to be the language of arithmetic. There
is one binary predicate (identity), one constant symbol, 0, and function symbols
for successor, addition and multiplication, /, + and x, respectively. As usual, the
numeral n is 0 followed by »n primes. Let S be the standard (classical) interpretation
of the language. A simple example of an inconsistent model of arithmetic is obtained
by collapsing S under the congruence relation, ~, defined as follows. Let » > 0 and
k > 1. Then x ~ y iff:

(x,y<mandx =y)or(x,y>nand x =y (mod k))
The collapsed model has a tail of length », and a cycle of period k. Its structure
may be depicted as follows:

0 — 1 — ... = n — .. = i
T !
n+k—-1 «— ... « i+1

For future reference, I will call this model S.

§3. Nuclei and their periods. In this section I will spell out the basic structure
of any inconsistent model of arithmetic (which includes the consistent ones, since
these area a special case).

Take any LP model of the set of sentences that hold in the standard model of
arithmetic, # = (M, I'). I will call the denotations of the numerals regular numbers.
Let x < y be defined in the usual way, as 3z x + z = y. Itis easy to check that < is
transitive. For if i < j < k then for some x, y,i + x = j and j + y = k. Hence
(i+x)+y=k.But(i+x)+y =i+ (x+y) (since # is a model of arithmetic).
The result follows.

If i € M, let N (i) (the nucleus of i) be {x € M ;i < x < i}. Ina classical model,
N (i) = {i}, but this need not be the case in an inconsistent model. For example,
in S the members of the cycle constitute a nucleus. If j € N (i) then N(i) = N ().
Forif x € N(j)theni < j < x < j <1i,s0 x € N(i), and similarly in the other
direction. Thus, every member of a nucleus defines the same nucleus.

Now, if N7 and N, are nuclei, define N; < N, to mean that for some (or all, it
makes no difference) i € Ny and j € N,, i < j. It is not difficult to check that <
is a partial ordering. Moreover, since for any i and j, i < j or j < i, itis a linear
ordering. The least member of the ordering is N (0). If N (1) is distinct from this, it
is the next (since for any x, x < 0V x > 1), and so on for all regular numbers.

Say that i € M has period p € M iffi + p = i. In a classical model every number
has period 0 and only 0. But again, this need not be the case in an inconsistent
model, as S demonstrate. If a nucleus has a period p > 1, I will call it proper.

Ifi < j and i has period psodoes j. Forj=i+x,sop+j=p+i+x=
i +x = j. In particular, if p is a period of some member of a nucleus, it is a period
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of every member. We may thus say that p is a period of the nucleus itself. It also
follows that if N; < N, and p is a period of Nj it is a period of N,. In particular,
then, if any nucleus is proper, all subsequent nuclei are proper.

Note, also, that the improper nuclei are simply singletons. For suppose that N is
not a singleton. Let x, y be distinct members of N. Then x < y. Letx +i = y.
i must be distinct from 0, so 1 < 7. Similarly, y + j = x, for some 1 < j. Thus,
x + (i +j)=x. But1 < i+ j. Hence, the nucleus of x is proper.*

§4. Chromosomes. Every proper nucleus is closed under successors. For suppose
that j € N with period p > 1. Then j < j' < j+ p = j. Hence, j' € N. In
an inconsistent model, a number may have more than one predecessor, i.e., there
may be more than one x such that x’ = j, as S demonstrates.’ But if j is in
a proper nucleus, N, it has a unique predecessor in N. For let the period of N
be q¢’. Then (j +¢q) = j +¢q' = j. Hence, j + g is a predecessor of j; and
j<j+q<j+4q =j. Hence, j+q € N. Next, suppose that x and y are in the
nucleus, and that x’ = y’ = j. We have that x < y V y < x. Suppose, without loss
of generality, the first disjunct. Then forsome z, x+z = y;s0 j+z = j,and z isa
period of the nucleus. But then x = x 4+ z = y. I will write the unique predecessor
of j in the nucleus as 7.

Now let N be any proper nucleus, and i € N. Consider the sequence:

(the members of the sequence may not all be distinct). Call this the chromosome of
i. Note thatif i, j € N, the chromosomes of i and j are identical or disjoint. For
if they have a common member, z, then all the finite successors of z are identical,
as are all its finite predecessors (in N). Thus they are identical. Now consider
the chromosome of i, and suppose that two members are identical. There must
be members where the successor-distance between them is a minimum. Let these
be j and j-/ where there are n primes. Then j = j + n, and » is a period of
the nucleus—in fact, its minimum non-zero period—and the chromosome of every
member of the nucleus is a successor cycle of period ».

Hence, any proper nucleus is a collection of chromosomes, all of which are either
successor cycles of the same finite (minimum) period, or are sequences isomorphic
to the integers (positive and negative). Both sorts are possible in an inconsistent
model. Just consider a collapse of a classical non-standard model by a congruence
relation which leaves all the standard numbers alone and identifies all the others
modulo p. If p is standard, the non-standard numbers collapse into a successor
cycle; if it is non-standard, the nucleus generated has linear chromosomes.

Let me summarise the results of this section and the last as:

THEOREM 0. The general structure of a model is a linear sequence of nuclei with
periods inherited up the ordering. There are three segments (any of which may be
empty). The first contains only improper nuclei. The second contains proper nuclei

4If i is a member of a proper nucleus with period p, then i # i. Fori + p = i + j’ = i. But since we
have a model of arithmetic i + j/ 5 i. Hence i # i. In a collapsed model the members of the improper
nuclei behave consistently. In an extension of a collapsed model, this need not be the case.

SAlthough (x’ = y’) D x = y holds in the model, we cannot necessarily detach to obtain x = y.
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with linear chromosomes. The final segment contains proper nuclei with cyclical
chromosomes. -

We may depict the general structure of a model as follows:

...a—>a/’... do...d; €. ..e
0:1,..-_ ...b—‘>b... T l T l
: dp_1... dl, Cm—1 e,’
Sfo-. fi
T 1
Factoo o f!
In the diagram, 0, 1,... (or, more precisely, their singletons) form the sequence of

improper nuclei. The next box represents a nucleus with linear chromosomes; and
the next two boxes represent nuclei with cyclical chromosomes.

Note that if N; is a cyclical nucleus with minimum non-zero period, p, and
N; =% N,, the minimum non-zero period of N,, ¢, must be a divisor (in the usual
sense) of p. For p is a period of N,, so ¢ < p. Suppose that g is not a divisor
of p. For some 0 < k < ¢, p is some finite multiple of g plus k. Soif x € N>,
x=x+qg=x+p+...+p+k. Hence x = x +k, i.e., k is a period of N, which is
‘impossible. Hence, if, in the preceding diagram, m and » are the minimum per1ods
of their nuclei, » is a divisor of m.

Most of the results of [7] follow simply from Theorem 0 by imposing the constraint
of finitude on the model. In that case, there is. a finite initial tail, and then a finite
sequence of cyclic nuclei (which [7] calls ‘cliques’) of non-decreasing periods; each
of these has a finite number of chromosomes. In [7], there is also a proof that a
model of any such structure can be constructed.

8§5. More on the internal structure of nuclei. In this section, I will make two sets
of miscellaneous observations about the structure of nuclei.

The first concerns predecessors. Suppose that i and j are in nucleus N, that
x' =i,y = j,butthat x, y arenotin N. Noweitherx = yVx > y'Vy > x'. In
the last case, i = x’ < y < y’ = j < i. So y is in the nucleus, which is impossible.
Similarly for the second case. Hence, x = y and so i = x’ = y’ = j. Thus, each
nucleus has at most one member with an external predecessor, and this predecessor
is unique. Moreover, only the first proper nucleus, if there is one, can have a member
with an external predecessor, since any external predecessor must be a member of
another nucleus, and all proper nuclei are closed under successors. Hence, there is
at most one number with multiple predecessors, and this has exactly two, one inside
and one outside its nucleus.

Secondly, some comments about addition and multiplication. The behaviour
of regular addends and multiplicands in models is completely determined by the
recursive equations for addition and multiplication. The general behaviour is not
so determined, and appears to be a complex issue. One thing that can be said,
however, is that in a finite model, each proper nucleus is closed under addition and

multiplication.
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For addition, start by considering the first proper nucleus, F. This must contain
some regular numbers. Let » be one such. Since the nucleus is closed under
successors, n +n € F,andson+n < n. Nowif x € F, x < n, and so
x <x+x <n+n<n < x. Next, we show by induction that this holds for
all the proper nuclei. Suppose that x € N. Then, by ordinary arithmetic, for
somey < x,y+y=xVy+y=x+1 ycannot be in a prior nucleus since
otherwise y + y would not be in N, by induction hypothesis. Hence, x < y. So
x<x+x<y+y<x+1<x. Sox+x € N. Finally, suppose that for any
nucleus, N, x,y € N.Thenx <y, soy<x+y<y+y<y,sox+y€EN.

The argument for multiplication is similar. In the first nucleus, F, n.n < n for
some regular n. Nowif x € F, x < m,andso x < x.x < nn < n < x. By
induction, this holds for all proper nuclei. Suppose that x € N. For some y,
y < x < y.y < x -+ x. (This is a fact of ordinary arithmetic.®) y cannot be in
a prior nucleus since otherwise y.y would not be in N, by induction hypothesis.
Hence, x < y. Sox < x.x < y.y < x+x < x. So x.x € N. Finally, suppose that
for any nucleus, N, x, y € N. If x is 0 then x.y = 0 and so x.y € N. Otherwise,
letx =i’ Theny <iy+y=((+1)y =xy. Sincex <y, x.y <p.y < y,s0
x.y € N.

§6. Nuclear ordering of ordinal order-type. Let us now turn to the question of
the order-type of the nuclei. In a collapsed model the sequence of improper nuclei
is identical (up to isomorphism) to the initial section of the model from which
it is collapsed. Thus, the improper nuclei in an inconsistent model can have any
structure which is an initial section of a classical model of arithmetic. Whether they
can have any other structure is as yet unknown.

More can be said about the structure of the proper nuclei. In this section I will
show that the proper nuclei can have the order-type of any ordinal. In subsequent
sections, we will see that they can also have non-well-ordered order-types. The hard
work of this section is packed into the following lemma.

LemMA 1. For every ordinal, «, there is a classical model of arithmetic, #,,, with
domain D, such that for all B < a, #, is a (classical) elementary end-extension of
Mp (i.e., My is an elementary extension of My, and all the members of D, not in Dy
are greater than all members of Dg). Further, if o < f then Do — Dy is non-empty,
and for limit A, Dy =|J Dg.

a<l

Proor. The proof is by transfinite induction. .# is the standard model of arith-
metic. Given #,, by a result of McDowell and Specker, it has a proper end-
extension. (See [1], p. 244, or [2], p. 96.) Let this be 4, ;. It is clear that this
satisfies the conditions. Now suppose that the result holds for all § < A. Then
{4p; B < A} is a chain of elementary extensions. Let .5 be its union. By a stan-
dard result ([1], p. 79) this is an elementary extension of each .#; satisfying the
appropriate condition. -

6Tt can be established by induction. Itisclear for x = 0. Soletx > 0. Supposethaty < x < y? < 2x.
If x < y2then y < x +1 < y?2 < 2x < 2(x +1). Hence, y is the number. If x = y? then
Y1 <x+1<y241< (412 =p2 42y +1 < 2(p2+1) = 2(x +1). Hence, y + 1 is the number.

TTheorem 1 can be proved without this result, by constructing a non-end extension with the com-
pactness theorem. But the rest of the proof has then to be made more complex.
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THEOREM 1. For every ordinal, «, there is an inconsistent model of arithmetic in
which the proper nuclei (which are, in fact, simple cycles) have order-type o.

Proor. Consider the model .Z, of the Lemma. For f < o, let Cg = Dg,1 — Dg.
It is easy to check that the Cgs partition the non-standard numbers of D, into «
disjoint non-empty segments, each of which is closed under x (and a fortiori, + and
’). Let n € Dy and define a relation, ~, on Dy, as follows. x ~ y iff:

(x,yeDpandx =y)or (3f<a,x,y € Cgand x = y (mod n))

It is easy to see that ~ is an equivalence relation, and also to check that it is a
congruence on the arithmetic operations. Hence we can construct the collapsed
interpretation, ... In this, Dy collapses into a segment comprising  improper
nuclei, and for f < a, each Cj collapses into a proper nucleus (with one cyclical
chromosome, of period n). Hence, the proper nuclei of .Z;” have order-type a, as
required. -

§7. Nuclear ordering of rational order-type. In an inconsistent model, the proper
nuclei do not have to have a discrete order-type. Call a linear ordering rational-like
if it is dense, with no first or last member. In this section I will show that there are
inconsistent (in fact, collapsed) models where the proper nuclei have rational-like
order-type.

A natural thought as to how to construct an inconsistent model with proper
nuclei of such order-type is to take a non-standard classical model of arithmetic,
and collapse it using an equivalence relation that turns every block of non-standard
numbers of type w* 4w into a nucleus. This will not work, however, since the blocks
are not closed under arithmetic operations, and so the equivalence relation involved
is not a congruence relation. We can, however, show that any non-standard clas-
sical model of arithmetic can be partitioned into segments closed under arithmetic
operations ordered in a rational-like way, and then collapse.

In what follows, 4 will be any non-standard classical model, and I will use the
letters n, m, as variables for the natural numbers (in 4). Consider the relation
defined on the non-standard numbers: a ~ b iff (¢ < b and In b < a™) or vice
versa.

LEMMA 2. =~ is an equivalence relation, and the equivalence classes are sections (i.e.,
if a and c are in a class and a < b < c then b is in the class) and are closed under
arithmetic operations.

Proor. =~ is obviously reflexive and symmetric. For transitivity, suppose that
a ~ b and b ~ ¢. Without loss of generality, suppose that ¢ < b, in which
case,b < a”. Noweitherb < corc < b. Inthefirstcase, a < ¢,andc < b™ < a™”,
so a ~ ¢. In the second case b < ¢™. Now, either a < ¢ or ¢ < a. In the first case
since ¢ < b < a” we have a ~ c. In the second case, a < b < ¢™ and hence we have
a ~ c again.

Next, we show that the classes are sections. Suppose that a and ¢ are in a class
and that a < b < ¢. Then ¢ < a” < b", as required.

Since each equivalence class is a section, to demonstrate arithmetic closure, it
suffices to show that the class is closed under multiplication, which is done as
follows. Suppose that a, b are in the same equivalence class. Then either a < b and
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b < a”", or vice versa. Without loss of generality, suppose the former. Then a < ab
and ab < aa” = a™*!. Hence, a and ab are in the same class. -

Next, let the equivalence class of a under ~ be ||a||; define ||a|| < ||#] iff @ and
b come from different equivalence classes and ¢ < b. This is well defined. For
suppose that @ and b come from different equivalence classes, that @ < b and that
¢ ~ a. (The argument for ¢ ~ b is the same.) Suppose, for reductio, b < c¢. Then
a < c,and b < ¢ < a”, which is impossible since a and b are from different classes.

LEMMA 3. The relation < on equivalence classes is a strong linear rational-like
ordering.

PROOF. < is clearly anti-symmetric and connected. For transitivity, suppose that
llall < 18]l < |lc]|- Then a < b < c. But a and ¢ must come from different classes
orb < ¢ < a", so a and b would come from the same class. Hence, ||a|| < |[c||.

The argument for denseness goes as follows. Suppose that ||a| < ||b]|. Consider
the formula, ¢(y), defined as follows: Ix(a” < x < x» < b) (where exponentiation
is defined in a standard fashion, and boldface is used for naming). This is satisfied
by every finite n. For take x to be a"*!: a" < a"! < (a"*)" = ") < b,
(The last part it true since @ and b are in different equivalence classes.) Robinson’s
Overspill Lemma ([2], 6.2) applied to ¢(y) entails that for some non-standard ¢
and d, a® < d < d° < b. It follows that 4 is in a different equivalence class from a
and b, and that ||a|| < ||d]| < ||&]|.

. That < has no greatest or least member follows in exactly the same way. -

One final lemma completes all the hard work. Let » be a fixed natural number.
Define the relation ~ on the domain of A4 as follows. a ~ b iff:

(a and b are standard and @ = b) or (@ ~ b and a = b (mod 7))

LEMMA 4. ~ is an equivalence relation on the numbers in A, and also a congruence
relation for successor, addition and multiplication.

Proor. Given Lemma 2, ~ is clearly an equivalence relation. For congruence:

(Successor) Suppose that x ~ y. If x and y are standard, the result is immediate.
If they are non-standard, the result follows, since equivalence classes under ~ are
closed under successor (Lemma 2).

(Addition) Suppose that x; ~ x; and y; ~ y,. Suppose that one of the xs or ysis
standard, say the xs. Then the result follows since all the equivalence classes under
~ are closed under addition (Lemma 2). So suppose that both are non-standard.
Clearly x; + y; = x2+ y, (mod n). It remains to show that the sums come from the
same blocks. If the xs and the ys themselves come from the same block, the result
follows since the blocks are closed under addition (Lemma 2). Suppose, then, that
they come from different blocks. Without loss of generality, suppose that x; < y;.
Now y; < x1+ y1 < y1 + y1. Since y;’s block is a section, and closed under
addition (Lemma 2), it follows that x; + y; is in the same block as y;. Similarly,
since x3 < y2, xa + y» is in the same block as y,. Thus x; + y; and x; + y, are in
the same block, as required.

(Multiplication). The argument for this is essentially the same. o H

We can now prove the main result.

THEOREM 2. Any non-standard classical model, A, has a collapse under which the
nuclei (which are, in fact, cycles) have a rational-like ordering.
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Proor. Since ~ is a congruence relation, we can collapse under it using the
Collapsing Lemma. The natural numbers collapse into a tail, and each equivalence
class under ~ collapses into a nucleus (in fact, a cycle) of period n. If it can be
shown that the relation < on the equivalence classes under ~ coincides with the
relation < on nuclei, the result follows, by Lemma 3.

So let a and b be numbers; let |a|| and ||b|| be their equivalence classes under ~,
and let C, and Cj, be the cycles into which the blocks collapse. If ||a|| = ||5]|, then
C, = Gp,andso C, X Cp. If ||a| < ||b]|, then a < b, and [a] < [b] in the collapsed
model. Hence, C, < C,. Conversely, suppose that C, < C,. Then in the collapsed
model [a] < [b]. So for somei,a+i ~b. Hencea+i ~b,and a +i and b arein
the same block. Hence, ||| < ||5]. o

§8. Continuous embeddings. In this section, I will generalise Theorem 2, to show
that there are inconsistent models where these nuclei have any order-type that can
be embedded in the rationals in a certain way. Let I be any linearly ordered set and
f an order-embedding of I into 7. We will say that f is continuous iff whenever J
is an initial segment of I and f[J] (= {f (i);i € J}) is bounded above in T, there is
a j € I such that f(j) is the least upper bound of f[J]. Let @ be the order-type of
the rationals, then it is an easy exercise to see that w* and w* + o (but not w + w*)
have a continuous embedding in &. :

THEOREM 3. Let I be any linearly ordered set which has a continuous embedding
in @. For each countable classical non-standard model of arithmetic, A, there is a
collapsed model where the nuclei (in fact, cycles) have the same order-type as I .

Proor. Consider the equivalence classes of 4 under the equivalence relation ~
of the previous section. By Lemma 3, this is a dense linear order with no first or last
member. It is therefore isomorphic to & (as is well known?). Let f be a continuous
embedding from 7 into this. Define the function g, with domain 7 as follows: if
i€l gli)=U{x;x > f(i) and for all j > i, £(j) > x}. In other words, g(i)
collects up all the members of f (i) together with all members of later equivalence
classes that are not in the image of some later j. Let G = {g(i);i € I}.

The members of G are clearly disjoint, and | J G is closed upwards under <. For
suppose that a € | JG and a < b. For some i, f (i) < |la| < ||b]|. Let x = ||b|.
Consider J = {i € I; (i) < x}. f[J] is obviously bounded above. Hence, there
isa j € I such that f(j) is the least upper bound of f[J]. Clearly, f(j) must be
< x; moreover, there can be no i € I such that f(j) < f(i) < x. Hence, x C g(j)
andb € |JG. ’

Each g(i) is a section. For suppose that @ < b < ¢, and a, ¢ € g(i). Then
f@@) < la|l < |5l < |lc||. Hence b € g(i). Finally, each g(i) is closed under
arithmetic operations. Since it is a section, it is sufficient to check that it is closed
under multiplication. So suppose that x, y € g(i), and x < y. Then y < xy < y?,
and since ||y|| is closed under multiplication, xy € ||y| C g(i).

Thus, G is a partition of some terminal section of the numbers into a disjoint,
arithmetically closed sections. Define an order on G in the natural way: g(i) < g(j)
iffi < j. Clearly, this is an order isomorphism. We now repeat the proof of Theorem
2, except that the members of G play the role of the equivalence classes under ~.

8See, e.g., [1], p. 176.
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Let n be any finite number, and define a relation ~ on numbers as follows. x ~ y
iff:
(x,y ¢ U G and x = y) or (forsomei € I, x,y € g(i), and x = y(mod n))

It is easy to see that ~ is an equivalence relation. And as in the proof of Lemma 4,
it is a congruence relation.

Collapse 4 under this relationship by the Collapsing Lemma. The result is a
model with a tail comprising (the equivalence classes of members of) the comple-
ment of | JG. Foreach i € I, g(i) collapses into a cycle. If the relation < on G
coincides with =< on the cycles into which G collapses, we have the required result.
But this follows as in the proof of Theorem 2. -

89. Conclusion. This paper has established many important aspects of the struc-
ture of inconsistent models of arithmetic. In particular, it has shown that such
models fall into three segments: the first contains improper nuclei; the second con-
tains proper nuclei with linear chromosomes; the third contains proper nuclei with
cyclical chromosomes. The nuclei have periods which are inherited up the ordering.
We have also seen that the improper nuclei can have the order-type of any ordinal,
of the rationals, or of any other order-type that can be embedded in the rationals in
a certain way.

I will finish with some observations and open questions. First, the observations.
I have followed the standard treatment of the language of first order arithmetic
in taking successor, addition and multiplication (and only those) to be expressed
by function symbols. This, however, is arbitrary to a certain extent. First-order
arithmetic could be formulated just as well with no function symbols, but with a
binary predicate to express successor, and ternary predicates to express addition
and multiplication. If arithmetic were formulated in this way, then collapse under
any equivalence relation would give an inconsistent model, and the inconsistent
models would have no interesting structure, as far as I can see.

At the other extreme, we could formulate arithmetic with many more function
symbols, say one for each primitive recursive function. This would make collapse
much more difficult. For example, in any model of arithmetic it would be impossible
to collapse the natural numbers in any but a trivial way. Just consider the predecessor
function, p (where p(0) = 0and p(n+1) = n). The collapse of the natural numbers
cannot now have a tail, since predecessors are unique, but it cannot be a cycle either
(other than the trivial one), since the predecessor of 0 must be 0. (Question: could
there be a non-trivial collapse of non-standard models under these conditions?)

“Assuming that successor, addition and multiplication are represented by function
symbols, as is done in this paper, is an intermediate course of action. In fact,
only the representability of the successor and addition functions are essential to
the arguments of this paper, as can easily be checked. So we may jettison the
representability of multiplication without loss. Jettisoning the representability of
the addition function would not seem to leave enough machinery to do anything
very interesting. (This is because virtually all arguments involve the ordering <.
This is defined in terms of addition, and the arguments employ its functionality
essentially.)

Next, the open (and interrelated) questions:
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1. What order-types can be the order-type of the proper nuclei in a collapsed
model, other than those established in Theorems 1, 2 and 3? Can it be, e.g., any
linear order? :

2. Can a nucleus have an infinitely descending sequence of periods? Must nuclei
always be closed under addition and multiplication?

3. All the inconsistent models that we have seen are constructed by collapsing
classical models—or at least, by collapsing them and then extending the collapse.
Are all the inconsistent models to be obtained in this way?’ I conjecture that they
are.

4. The only collapsed models that we have seen are produced by a certain kind
of equivalence relation. A classical model is partitioned into a number of disjoint
sections closed under arithmetic operations; except for the first block, each block
is collapsed with identity modulo some number (possibly identifying some of the
blocks in the process). Are there any other kinds of collapsed models?

This paper establishes, I hope, that the theory of the structure of inconsistent
models of arithmetic is just as rich and interesting as that of the structure of the
consistent models (indeed, more so, since the consistent models are a special case).
As is clear, there is still more to be learned about these models; in particular, a
complete taxonomy is still to be found. !
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